

Tool to Automatically Generate Database Wrapper Classes

Prepared by:
Jason Kelly

Department of Computer Science
The University of Waikato

Prepared for:
Sally Jo Cunningham

Department of Computer Science
The University of Waikato

This proposal outlines the development of a software tool that would save
developers time when writing database wrapper classes. When writing applications
that rely on retrieving and maintaining data in a database system, developers usually
write a set of reusable classes which contain all the database-specific code. Often,
especially with large databases, these classes are repetitive and tedious to write.
Often, because much of the code is fairly similar, developers may copy, paste and edit
functions in the code, which greatly increases the chances of bugs in the code. This
proposed tool would examine the Structured Query Language script file that was used
to create the database, and based on the schema information, would then generate a
set of wrapper classes that could be used to access the database tables. This tool
would reduce the amount of developer time spent writing and debugging wrapper
classes.

Introduction

In the development of information-centric applications, it is often common to

embed Structured Query Language (SQL) statements within a series of reusable

wrapper classes that the application logic can use for the retrieval and management of

information stored in a database system. For large and complex database schemas, the

wrapper classes can often be very tedious and repetitive to write. A solution to this,

which this project proposes, would be to build the necessary wrapper classes

automatically based on the database schema script file used to build the database.

Background

As software applications become more information-orientated, their reliance

on information storage and retrieval systems grows. The demand for information

storage and retrieval systems resulted in the development of database systems. While

many database systems, both proprietary and open-source, have matured and become

very powerful within the domain of managing information, the technology for

interacting with the database systems programmatically is often complex to

implement, such as with the Open Database Connectivity (ODBC) Application

Programming Interface (API) (Grechanik et al., 2002). Access is not standardised

across the different database systems which offer different levels of ODBC

compliance.

For these reasons it is better to offer the application developers a level of

abstraction from the database access code by placing all database access code in a

group of reusable classes in a centralised location. This, as Grechanik et al. (2002)

also points out, helps to increase code maintainability.

Design

The proposed system will be written in the Java programming language and

will thus be operating system (OS) independent to a degree – it will require a Java

Runtime Engine (JRE) or other suitable Java Virtual Machine (JVM) to be installed

on the computer it is running on. The proposed tool will be written using Java 5.0

language constructs, and will require a JRE of version 1.5 or greater to run. The

source code generated by this tool will be compatible with a JRE of version 1.4 and

greater.

The tool should run as an Eclipse IDE plug-in; however, if research shows that

making it an Eclipse plug-in is too costly time-wise, then it will be developed to run

as a stand-alone Java application.

It will accept, as its input, any valid SQL script file that contains SQL Data

Definition Language (DDL) which creates a database and one or more tables in the

database.

The system’s output will include the Java source code, written to disk, for the

wrapper classes which are generated from the SQL DDL script file given as the input.

Several types of wrapper classes will be examined, and the one that is most intuitive

and offers the best ease of maintenance will be used.

Evaluation

As this tool is intended to be used from within the Eclipse IDE, it will offer

developers using Eclipse as their development tool an easy way to generate wrapper

classes. This would, however, prevent other developers who do not use Eclipse from

using this tool. As a stand alone application, this limitation would be avoided;

however, Eclipse developers would not have the convenience of having this tool as a

part of their IDE.

This tool will generate wrapper classes written in Java. Although the tool will

be written to support the ability to write in different languages, for the purposes of this

project only Java output will be supported.

Proposed Schedule

The table below outlines the proposed deadline dates for this project.

Task / Component Completion

Research possibility of using Eclipse plug-in architecture 30/03/2006

Research SQL script parsers 2/04/2006

Implement SQL script parser 15/04/2006

Design plug-in architecture of code writer for future expansion 1/05/2006

Deliverable: Interim Report 2/06/2006

Build Java Code Writer 2/06/2006

Test and refine Java Code Writer 20/07/2006

Conference presentation draft 16/08/2006

Deliverable: Conference abstract 18/08/2006

Conference 1/09/2006

Deliverable: Final report 11/10/2006

Resources

The hardware and software resources required to develop this project are

readily available. For the development of this project a computer with Java SDK

versions 1.4 and 1.5 will be used. For writing and performing initial testing of the

code I will use the freely available Eclipse Integrated Development Environment

(IDE). I will test the generated Java source code against a number of freely available

database servers, such as MySQL, PostgreSQL, and Microsoft SQL Server 2005

Express.

There already exists an open source tool which performs a similar function as

would the tool this project aims to develop, although upon an initial examination it

seems that this tool generates Java source code for use in enterprise web applications.

Parts of the open source tool may prove to be useful in this project, so the open source

tool will be examined further.

Two utilities I have developed previously will be useful in the development of

this project. The first utility generated C# source code for database table wrapper

classes. It is a simple utility, written in Java, which was used to write and comment

the getter and setter methods for wrapper classes of large tables (25 or more columns).

The second utility, written in PHP, is a web-based tool for editing database table data.

The utility dynamically builds the HTML form, and interacts with the database, based

solely on an XML description of the database. If changes were made to the database,

or a different database was used, all that would be required for the utility to work

would be to update the XML database description.

Conclusion

This project, when completed, will provide developers with a time-saving tool

that can be used to quickly generate a series of database wrapper classes based on the

SQL DDL script file defining the database. The generated code will be usable

immediately after generation, that is, it will retrieve data from and save data to the

database without any modifications to the code. The code will also be fully

documented and easy for the developers to customise should they require any code

customisation.

References

Grechanik M., Perry D. and Batory D. (2002). “An approach to evolving database

dependent systems.” Proceedings of the International Workshop on Principles

of Software Evolution, Orlando, Florida, pp. 113 – 116.

