

COMP420 Interim Report:
Automated Database Wrapper Class

Generation

Prepared for
Dr. Mark Apperley

Dr. Sally Jo Cunningham
Department of Computer Science

University of Waikato

Prepared by
Jason Kelly

COMP420-06C: Report of an Investigation
Department of Computer Science

University of Waikato

Friday, 2 June 2006

i

Summary

The following interim progress report on the Automated Database Wrapper

Class Generation software development tool provides a summary of the work

completed to date, and outlines the remaining tasks required to complete this software

development tool project. This document focuses on the technical requirements of the

project and only briefly covers programming details. The project implementation

consists of three phases: firstly, research, design and refinement of original concepts;

secondly, implementation of design; lastly, user acceptance testing and feedback.

ii

Table of Contents

Summary...i

Table of Contents...ii

Background..1

Project Description...1

Research and Design..2

Eclipse IDE UI Integration ..4

SQL Interpreter ..4

Source Code Generator..5

Work Completed..5

Current Work ...6

Future Work ...7

Beyond Honours ..7

Conclusion ...8

References..8

Appendix A: UI Integration...9

Appendix B: JDBC Driver Types ..11

Appendix C: Structure Diagrams...12

Appendix D: Original Proposal ...13

COMP420 Interim Report
Prepared by Jason Kelly

1

Background

In the forth quarter of 2005, all students intending to enrol in the honours

stream for the Bachelor of Computing and Mathematical Science (BCMS) degree at

the University of Waikato were instructed to select and propose a project for the 2006

honours paper Report of an Investigation. Lecturers from the Department of

Computer Science composed a list of possible honours paper projects related to their

research areas, from which students could select a project. Students were also able to

propose their own projects provided a member of the Department of Computer

Science was willing to supervise the project.

The proposal I developed for the honours paper project stemmed from the lack

of availability of an easy-to-use, open source software development tool to automate

the generation of database wrapper classes based on a textual representation of the

database structure. Dr. Sally Jo Cunningham has kindly agreed to supervise my

honours project.

Project Description

This project is intended to provide Java software developers with an easy-to-

use development tool for automatically generating database wrapper classes based on

the Structured Query Language (SQL) script file that defines the database schema.

Database wrapper classes mirror the database tables, and are used to retrieve data

from and write modified data to the database (Lauesen, 1998).

By wrapping database access in a set of object classes we are able to treat the

database as objects and not have to concern ourselves with the database-specific

access details hidden in the objects. This methodology provides a couple of benefits:

firstly, it provides a layer of abstraction between the database system and the

application logic, which allows software developers to separate the application logic

from the database access code, which in turn makes maintenance of the code base

easier because it more modular and the code is grouped logically by the functions it

performs; secondly, it allows the underlying database technology to be changed while

insulating the application logic from those changes.

COMP420 Interim Report
Prepared by Jason Kelly

2

The goal of this project is to build a Java-based open source software

development tool that is able to:

• Parse and interpret SQL schema definition files: many Database Management

Systems (DBMS) often stray from the SQL 1999 standard and implement their

own proprietary data types and SQL constructs. The parsing engine should

correctly handled and interpret these custom elements.

• Generate and write to disk wrapper classes: Java classes should be generated

based on the tool’s interpretation of the SQL schema definition file. The

classes should utilise the JDBC Application Programming Interface (API), and

be compatible with JDBC Type 4 drivers1. All wrapper classes generated

should be encapsulated in a user-specified package.

The life of this development tool is planned to extend beyond that of the

honours paper project, and as such, suitable hosting should be found for the project.

As it is planned to be an open-source application, after an appropriate Open Source

Initiative (OSI) approved licence2 has been selected for the project, then hosting can

be organised with hosting service provider such as SourceForge3.

Research and Design

There were two possible routes to take on designing how the wrapper class

generation tool would be built. The first route was to build a stand-alone tool which

could be run by developers as and when they needed to build the wrapper classes. The

benefit of having a stand-alone tool of this nature is that it is independent of the

developers’ chosen development environment as its only requirement would be the

Java Run Time Engine (JRE). A disadvantage it that the tool would be another

application that the developers would have to run.

The second route, which was the one I chose for this project, was to integrate

the tool as a plug-in into a Java-based Integrated Development Environment (IDE). I

1 See Appendix B for JDBC driver type definitions.
2 http://www.opensource.org/licenses/
3 http://sourceforge.net/

COMP420 Interim Report
Prepared by Jason Kelly

3

chose to integrate the database wrapper class generation tool with the Eclipse IDE4 for

three reasons:

• It has a large user base and a very active online community.

• It is an open-source development environment written in Java, and is written

using a modular, plug-in orientated framework, which has public APIs that

allow for the extension, reuse and modification of all functionality already

available in the IDE.

• I have used it for Java application development and am more familiar with it

than with other Java IDEs.

The benefits of integrating into an IDE as a plug-in are that, firstly, the IDE

manages controls the development environment; secondly, the IDE is able to provide

a notion of project-context which helps ensure code is generated in the correct

location; thirdly, the plug-in tool can use the built-in functionality of the IDE to

generate the wrapper class source files; and lastly, the extra functionality that the tool

offers developers in now available to them from within the IDE.

The disadvantage of using the plug-in model is that developers who do not use

the IDE that the tool integrates with will not be able to use the tool unless they change

to the supported IDE.

The second step in the design process was to determine what the major

components were, and what their sub-components were. The following list gives an

overview of what the components were:

• Eclipse IDE UI Integration

• Menu bar item

• Toolbar button

• Popup menu item

• Wizard

• SQL Interpreter

• SQL file parser

• Database structure model builder

• Source Code Generator

4 http://www.eclipse.org/

COMP420 Interim Report
Prepared by Jason Kelly

4

The following three sub-sections describe each of the components listed

above.

Eclipse IDE UI Integration

To ensure that users are able to easily and quickly access the wrapper class

generator tool, it should have an easy-to-see and use representation in the user

interface of the IDE. To achieve this, there should be three different user interface

extensions: an entry on the menu bar, a toolbar button, and an entry on a popup menu.

The menu bar item and toolbar item should be available at all times that the plug-in is

active. The entry on the popup menu should only be available when the plug-in is

active and when a SQL script file is highlighted.

When any of these three user interface extension points are activated, the user

should be presented with a wizard, which will be used to gather the information the

wrapper class generator requires to perform its task. The wizard should be divided

into two pages: the first page should obtain the location of the SQL script file that is

to be parsed and the location of the package into which to place the generated source

code; the second page should present the user with a list of all the tables for which

wrapper classes will be generated, allowing the user to select and deselect tables.

Deselected tables will not have wrapper classes generated for them.

SQL Interpreter

The SQL Interpreter has two main sub-components: the SQL parser and the

database structure model builder.

The SQL parser will parse the SQL script file that the user has selected on the

first page of the wizard. The parser will be responsible for extracting the table

structure information from the SQL script file. This information will include the table

names, the column names, the column data types, the column length restrictions, the

primary and foreign key information, and some data integrity check information.

These extracted details will then be passed to the database structure model builder,

which will then build an in-memory representation of the database structure.

These two steps will be preformed between pages one and two of the wizard.

The information held in the in-memory database structure model can then be used to

COMP420 Interim Report
Prepared by Jason Kelly

5

allow the user to select which tables they want wrapper classes generated for. The

tables that the user selected for wrapper class generation would be flagged for

generation in the model. If, for any reason, the SQL parser determines that there are

errors in the SQL script file, then the user can be alerted to that fact on the second

page of the wizard.

Source Code Generator

The source code generator is responsible for using the Eclipse IDE code

generation API to write the database wrapper classes to the package that the user

specified. The code generator iterates through the in-memory database structure

model generating the wrapper classes for the tables that have been marked for

wrapper class generation. The code generator will also infer and generate some simple

query methods based on primary and foreign key constraint information obtained

from the script file.

The source code generated by the code generator will be complete and

syntactically correct, and should be usable immediately for simple database access.

The generated source code will also have full documentation and the documentation

should be usable immediately as API documentation for the wrapper classes.

Work Completed

With regard to hosting the project on SourceForge, I have registered an

account with them and have obtained documentation that specifies how an application

for the hosting of an open-source project is processed, and what supporting project

information is required for the application process.

The integration into the Eclipse IDE user interface is mostly completed. The

menu bar item, toolbar button, and popup menu item contributions to the IDE

graphical user interface are completed and functioning correctly. Activating any of the

three will start the wizard for the plug-in. The interface contributions are specified

using an XML file which describes what the contributions are, how they should

function, and which action classes should be run when the contributions are selected.

The first page of the wizard is completed. The first page provides text entry

fields that allow the user to specify the source SQL script file and the destination

COMP420 Interim Report
Prepared by Jason Kelly

6

package. The user also has the option to turn on an overwrite flag which will instruct

the code generator to replace any classes existing in the specified package which have

the same names as any of the generated classes. Both text entry fields have “Browse”

buttons, which allow the user to browse the project work-space graphically using a

tree structure, and allows them to select an SQL file and package for each text field

respectively.

Screenshots of the above completed graphical user interface contributions are

included in Appendix A.

I have also completed planning what overall structure the generated wrapper

classes should have. The tool will generate a generic table wrapper which will contain

functions applicable to all tables, such as general database query methods and result

set transversal. Individual table wrapper classes will then extend the functionality

provided by the generic wrapper class, and implement any table-specific functionality,

such as running table-specific queries against the database table. The table wrapper

class API will encapsulate table instance-data (one row of data in the table) in an

object, thereby allowing information for an instance of an entity to be treated as a

single object. The data-instance object will also provide the data integrity

enforcement. See Appendix C for a diagram representing this structure.

Current Work

After examining a number of OSI licenses, the list of potential licences that

could be chosen to publish this project under has been narrowed to four. These are the

Eclipse Public License5 (EPL), the Common Public License version 1.06 (CPL1.0),

the GNU Public License7 (GPL), and the GNU Lesser General Public License8

(LGPL).

In the wizard I am refining the filters for the project-space browsing dialogs to

filter out resources that need not be displayed, such as Java source code files when

searching for a SQL script file. I am also working on the second page of the wizard,

positioning the correct components and testing that they work correctly.

5 http://www.opensource.org/licenses/eclipse-1.0.php
6 http://www.opensource.org/licenses/cpl1.0.php
7 http://www.opensource.org/licenses/gpl-license.php
8 http://www.opensource.org/licenses/lgpl-license.php

COMP420 Interim Report
Prepared by Jason Kelly

7

I have begun planning how the in-memory database structure model will be

implemented, and how the SQL parser will populate it with information. The model

will structured as an n-ary tree with the first level of nodes containing the table names,

the second level of nodes containing the column names, and the third level of nodes

containing column attributes. The column attributes would be stored in an array

structure, and would include details such as the data types of the columns, any data

integrity constraints, and whether or not the columns are members of primary or

foreign keys. See Appendix C for a graphical representation of the proposed model

structure.

Future Work

Future work on this project within the scope of the honours paper is organised

based on completion order. Future work beyond the planned scope for the honours

project is included at the end of this section.

On completion of the current tasks, I plan to implement the SQL parser and

the in-memory database structure model concurrently. Once this is complete I will

integrate these components into the wizard process between the two wizard pages.

Once this integration is complete I will build the code generation algorithms to

generate, using the API functionality provided in the Eclipse IDE, the Java source

code for the required wrapper classes.

Following the completion of the SQL parser I will begin testing the parsing

component and ensure that it is building the correct database structure models for

database schema SQL scripts written for different proprietary DBMS. After the

completion of the code generator I will test that the plug-in tool is in-fact writing

syntactically correct code that will perform its intended function correctly.

When I am confident that the plug-in is stable enough for general user testing

and evaluation, I will organise developer testing and feedback for the plug-in.

Beyond Honours

Future development after the completion of the honours paper may include

some of the following.

COMP420 Interim Report
Prepared by Jason Kelly

8

Users should be able to annotate the SQL script file with SQL comment lines

that specify customised SQL queries and method names for the plug-in tool to

generate in addition to the standard queries. A use case for this feature would be

where the user has a need to retrieve a set of rows from the database based on a

column that is not a part of a primary or foreign key, such as customers’ surnames.

On the second page of the wizard users should be shown a list of the table

columns and their related method names, and be given the ability to modify the

function names as they see fit. A use case for this feature could be where the

underlying technology has been changed and a default wrapper class generation

would render method names that are different to the previously available API. This

would allow users to modify the generated wrapper API at generation time.

Conclusion

At the completion of this honours project, the Automated Database Wrapper

Class Generator plug-in, for the Eclipse IDE, should be able to extract database

structure information from a SQL script file containing the database schema. It should

then be able to use that structure information to generate a set of wrapper classes

which, without modification, can be used to access the database.

References
Lauesen, S. (1998). Real-life object-orientated systems. In IEEE Software (1998,

March/April), 15, 2, 76 – 83.

COMP420 Interim Report
Prepared by Jason Kelly

9

Appendix A: UI Integration

The following screenshots are taken from the work currently done regarding

the integration of the plug-in into the Eclipse IDE user interface.

Fig. 1 Screenshot showing menu bar item and toolbar button.

Fig. 2 Popup menu item included in the context menu for SQL files.

COMP420 Interim Report
Prepared by Jason Kelly

10

Fig. 3 Wizard showing the "Browse" dialog for finding the SQL script file.

COMP420 Interim Report
Prepared by Jason Kelly

11

Appendix B: JDBC Driver Types

The JDBC technology drivers fit into one of four types:

• Type 1: Access is provided through the use of a JDBC-ODBC bridge. This

means that the JDBC API calls functions in one or more ODBC drivers. In

many case this type of driver requires that native ODBC driver and native

database client software be installed on the machine using the JDBC-ODBC

bridge.

• Type 2: Provides a native-API that the JDBC API can call on. Often the full

JDBC API is not supported, and this type of driver requires that native driver

code is installed on the machine.

• Type 3: This is a network protocol server middleware. A client can connect to

the server middleware using the JDBC API, which is fully supported, and the

server middleware translates the JDBC API calls into DBMS-specific network

protocol API calls.

• Type 4: This is pure Java JDBC client that communicates with the DBMS

using the proprietary protocol belonging to the DBMS. Type 4 drivers are

usually only available from the DBMS manufacturers.

For more information about the different JDBC driver types, see the Sun

Microsystems documentation regarding the different JDBC driver types found at:

http://java.sun.com/products/jdbc/driverdesc.html

COMP420 Interim Report
Prepared by Jason Kelly

12

Appendix C: Structure Diagrams

The following is a graphical representation of the in-memory database

structure model:

Fig. 4 In-memory database structure model.

COMP420 Interim Report
Prepared by Jason Kelly

13

Appendix D: Original Proposal

Tool to Automatically Generate Database Wrapper Classes

Prepared by:
Jason Kelly

Department of Computer Science
The University of Waikato

Prepared for:
Sally Jo Cunningham

Department of Computer Science
The University of Waikato

This proposal outlines the development of a software tool that would save
developers time when writing database wrapper classes. When writing applications
that rely on retrieving and maintaining data in a database system, developers usually
write a set of reusable classes which contain all the database-specific code. Often,
especially with large databases, these classes are repetitive and tedious to write.
Often, because much of the code is fairly similar, developers may copy, paste and edit
functions in the code, which greatly increases the chances of bugs in the code. This
proposed tool would examine the Structured Query Language script file that was used
to create the database, and based on the schema information, would then generate a
set of wrapper classes that could be used to access the database tables. This tool
would reduce the amount of developer time spent writing and debugging wrapper
classes.

COMP420 Interim Report
Prepared by Jason Kelly

14

Introduction

In the development of information-centric applications, it is often common to

embed Structured Query Language (SQL) statements within a series of reusable

wrapper classes that the application logic can use for the retrieval and management of

information stored in a database system. For large and complex database schemas, the

wrapper classes can often be very tedious and repetitive to write. A solution to this,

which this project proposes, would be to build the necessary wrapper classes

automatically based on the database schema script file used to build the database.

Background

As software applications become more information-orientated, their reliance

on information storage and retrieval systems grows. The demand for information

storage and retrieval systems resulted in the development of database systems. While

many database systems, both proprietary and open-source, have matured and become

very powerful within the domain of managing information, the technology for

interacting with the database systems programmatically is often complex to

implement, such as with the Open Database Connectivity (ODBC) Application

Programming Interface (API) (Grechanik et al., 2002). Access is not standardised

across the different database systems which offer different levels of ODBC

compliance.

For these reasons it is better to offer the application developers a level of

abstraction from the database access code by placing all database access code in a

group of reusable classes in a centralised location. This, as Grechanik et al. (2002)

also points out, helps to increase code maintainability.

Design

The proposed system will be written in the Java programming language and

will thus be operating system (OS) independent to a degree – it will require a Java

Runtime Engine (JRE) or other suitable Java Virtual Machine (JVM) to be installed

on the computer it is running on. The proposed tool will be written using Java 5.0

COMP420 Interim Report
Prepared by Jason Kelly

15

language constructs, and will require a JRE of version 1.5 or greater to run. The

source code generated by this tool will be compatible with a JRE of version 1.4 and

greater.

The tool should run as an Eclipse IDE plug-in; however, if research shows that

making it an Eclipse plug-in is too costly time-wise, then it will be developed to run

as a stand-alone Java application.

It will accept, as its input, any valid SQL script file that contains SQL Data

Definition Language (DDL) which creates a database and one or more tables in the

database.

The system’s output will include the Java source code, written to disk, for the

wrapper classes which are generated from the SQL DDL script file given as the input.

Several types of wrapper classes will be examined, and the one that is most intuitive

and offers the best ease of maintenance will be used.

Evaluation

As this tool is intended to be used from within the Eclipse IDE, it will offer

developers using Eclipse as their development tool an easy way to generate wrapper

classes. This would, however, prevent other developers who do not use Eclipse from

using this tool. As a stand alone application, this limitation would be avoided;

however, Eclipse developers would not have the convenience of having this tool as a

part of their IDE.

This tool will generate wrapper classes written in Java. Although the tool will

be written to support the ability to write in different languages, for the purposes of this

project only Java output will be supported.

COMP420 Interim Report
Prepared by Jason Kelly

16

Proposed Schedule

The table below outlines the proposed deadline dates for this project.

Task / Component Completion

Research possibility of using Eclipse plug-in architecture 30/03/2006

Research SQL script parsers 2/04/2006

Implement SQL script parser 15/04/2006

Design plug-in architecture of code writer for future expansion 1/05/2006

Deliverable: Interim Report 2/06/2006

Build Java Code Writer 2/06/2006

Test and refine Java Code Writer 20/07/2006

Conference presentation draft 16/08/2006

Deliverable: Conference abstract 18/08/2006

Conference 1/09/2006

Deliverable: Final report 11/10/2006

Resources

The hardware and software resources required to develop this project are

readily available. For the development of this project a computer with Java SDK

versions 1.4 and 1.5 will be used. For writing and performing initial testing of the

code I will use the freely available Eclipse Integrated Development Environment

(IDE). I will test the generated Java source code against a number of freely available

database servers, such as MySQL, PostgreSQL, and Microsoft SQL Server 2005

Express.

There already exists an open source tool which performs a similar function as

would the tool this project aims to develop, although upon an initial examination it

seems that this tool generates Java source code for use in enterprise web applications.

Parts of the open source tool may prove to be useful in this project, so the open source

tool will be examined further.

Two utilities I have developed previously will be useful in the development of

this project. The first utility generated C# source code for database table wrapper

classes. It is a simple utility, written in Java, which was used to write and comment

COMP420 Interim Report
Prepared by Jason Kelly

17

the getter and setter methods for wrapper classes of large tables (25 or more columns).

The second utility, written in PHP, is a web-based tool for editing database table data.

The utility dynamically builds the HTML form, and interacts with the database, based

solely on an XML description of the database. If changes were made to the database,

or a different database was used, all that would be required for the utility to work

would be to update the XML database description.

Conclusion

This project, when completed, will provide developers with a time-saving tool

that can be used to quickly generate a series of database wrapper classes based on the

SQL DDL script file defining the database. The generated code will be usable

immediately after generation, that is, it will retrieve data from and save data to the

database without any modifications to the code. The code will also be fully

documented and easy for the developers to customise should they require any code

customisation.

